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Abstract. Theoretical issues and perspectives of hadronic matter at high baryon density are discussed with
focus on the restoration of chiral symmetry and observable consequences.

PACS. 25.75.-q Relativistic heavy-ion collisions – 21.65.+f Nuclear matter

1 Introduction

The properties of strongly interacting matter under ex-
treme conditions in temperature and density are the cen-
tral focus of the relativistic heavy-ion program. One of the
aims is to explore the phase diagram in the (T, µ)-plane
which becomes experimentally accessible provided ther-
mal equilibrium is reached during the early stages of the
collision. The hadrochemical analysis of freeze-out abun-
dances indicates that this may indeed be the case over a
wide range of collision energies [1]. Our understanding of
the phase structure and possible phase transitions remains
sketchy. Stringent results from ab initio lattice simulations
are only available along the T -axis [2] due to numerical
difficulties at finite µ. The µ = 0 lattice results indicate
that, for physical values of the bare strange quark mass
m◦

s there is a smooth crossover at a transition temperature
of ∼ 170MeV at which chiral symmetry is restored, ac-
companied by a rapid change in the bulk thermodynamic
variables. The latter signals the opening up of new degrees
of freedom and is interpreted as a signature of deconfine-
ment. It remains to be understood why chiral symmetry
restoration and deconfinement seem to occur at the same
value of the temperature. Several model studies [3] indi-
cate that at values of µ ∼ 1GeV and small temperatures
a chiral phase transition of first order should occur. This
implies the existence of a critical point at which the crit-
ical line ends. The exact location of this point sensitively
depends on the value of m◦

s and its experimental deter-
mination would be an important milestone in the study
of the phase diagram. Possible signatures have been sug-
gested [4] and relate to the long-wavelength fluctuations
of the in-medium chiral condensate.

In this paper I will focus on aspects of the restoration
of spontaneously broken chiral symmetry which, in my
opinion, are better understood than the issues related to
deconfinement. Spontaneous chiral-symmetry breaking in
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the QCD vacuum and its restoration at finite µ and T
is intimately related to the question of mass generation
for light hadrons and the medium modification of their
spectral properties.

2 The restoration of chiral symmetry

The starting point for the equilibrium description of
strongly interacting matter is the QCD partition function
in the grand canonical ensemble

ZQCD

(
V, T, µq

)
= Tr e−(HQCD−µqNq)/T , (1)

where Nq is the quark number operator and µq =
µ/3 the quark chemical potential. From the free energy
Ω(T, µ) = −T limV →∞ 1/V lnZQCD(V, T, µq) all thermo-
dynamic quantities such as pressure, internal energy, en-
tropy, etc. can be derived in a standard way. In addition,
an expression for the chiral condensate is obtained as

〈〈q̄q〉〉 = ∂Ω(T, µ)
∂m◦

q

, (2)

where m◦
q denotes the current quark mass. Finally,

through the corresponding susceptibilities, the free energy
also determines the fluctuation properties of matter and
hence the criticality near a phase transition. Besides the
specific heat, the compressibility etc., the scalar (chiral)
susceptibility

χS =
T

V

∂2Ω(T, µ)
∂m◦2

q

= 〈〈(q̄q)2〉〉 − 〈〈q̄q〉〉2 (3)

which relates to the fluctuations of the chiral condensate,
plays an important role.
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2.1 Evolution of the chiral condensate

The chiral condensate is one of the order parameters for
chiral-symmetry breaking and its evolution with temper-
ature and number density, n(µ), reflects the restoration
of the symmetry. Starting from low T or µ close to the
chemical potential of nuclear matter at saturation, µ0, it
is more economical to work with confined hadrons rather
than quark-gluon degrees of freedom. The connection can
be made rigorous. Using eq. (2) in conjunction with the
Gell-Mann Oakes Renner relation (GOR) which is well
obeyed in vacuum [5] one can express the ratio of the in-
medium condensate to that in the vacuum as a sum over
all hadronic states present in matter as

〈〈q̄q〉〉
〈q̄q〉 ≡ Rχ = 1−

∑
h

Σh�
s
h(T, µ)

f2
πm

2
π

(4)

with

Σh=m◦
q

∂mh

∂m◦
q

=
1
m◦

q

〈h|q̄q|h〉; �s
h

(
T, µq

)
=

∂Ω̃(T, µ)
∂mh

(5)

(Ω̃(T, µ) = Ω(T, µ) − Ω(0)). There are two ingredients
that enter eq. (4). One relates to the chiral properties of
the hadron in question and is determined by the corre-
sponding “sigma commutator”, Σh. Physically, Σh repre-
sents the amount of energy required to displace the vac-
uum condensate in the vicinity of the hadron. The second
involves the scalar density �s

h(T, µ) of hadrons in the in-
teracting matter which is determined by ∂Ω(T, µ)/∂mh,
where mh denotes the vacuum mass of the hadron. Here
the full complications of the many-body problem enter.

There are only two regions in the phase diagram where
we have complete knowledge for the condensate evolution.
One is for small T and µ, i.e. close to vacuum, and the
other near cold nuclear matter at saturation characterized
by T = 0, µ = µ0. For small T and µ, hadronic matter can
be viewed as a weakly interacting gas of thermally excited
pions. Similarly, nuclear matter in the vicinity of µ0 and
small temperatures approximately behaves as a dilute gas
of nucleons interacting with pions. In both cases chiral
perturbation theory as a rigorous effective field theory can
be applied, to obtain a model-independent leading-order
expansion for eq. (4):

〈〈q̄q〉〉
〈q̄q〉 = 1− T 2

8f2
π

− 0.3
n(µ)
n(µ0)

+ · · · , (6)

which corresponds to the free gas approximation. Thus,
the mere presence of an ideal gas of hadrons diminishes
the chiral condensate without changing the vacuum prop-
erties of the hadrons! Obviously, medium modifications
and the corresponding non-trivial changes of the chiral
condensate have to involve hadronic interactions. They
become increasingly important as the matter grows hot-
ter and denser, i.e. one moves deeper into the (T, µ)-plane
and approaches the phase boundary. According to eq. (4),
more and more hadronic states will enter, which severely
limits the description near the phase transition. Chiral

Fig. 1. The lattice quark mass function in Landau gauge [8].

perturbation theory ceases to be applicable and one has
to resort to chiral effective Lagrangians that treat higher-
mass hadrons as explicit degrees of freedom. In the vicin-
ity of the phase boundary, non-perturbative many-body
methods are called for, in addition.

2.2 Hadrons and chiral symmetry

Spontaneous chiral-symmetry breaking plays a decisive
role in the mass generation of light hadrons [6,7]. On
the other hand, chiral-symmetry breaking is an infrared
phenomenon. This is clearly seen in lattice calculations
of the Euclidean quark mass function in the Landau
gauge [8] (fig. 1) and also follows from Dyson-Schwinger
approaches [9]. As a consequence, high-mass mesons and
baryons should decouple from the chiral condensate lead-
ing to parity doublets. This implies that their respective
sigma commutators vanish (or at least become very small).
Hence, according to eq. (4), they do not contribute to the
condensate evolution. There is some evidence for parity
doubling in the meson and baryon spectrum. The recent
τ -decay measurements [10] of the vector- and axial-vector
spectral distribution suggest that both spectral functions
become identical between 1.5GeV and 2GeV and coin-
cide with the PQCD limit [11]. This energy scale would be
consistent with the lattice results in fig. 1. For the nucleon
there are also tantalizing hints for parity doubling in the
same range of excitation energy as suggested in ref. [12].
To put this conjecture on firmer grounds, detailed baryon
spectroscopy of overlapping resonances is required. This
difficult task is being discussed at electron accelerators
such as ELSA in Bonn [13].

The fact that high-mass mesons and baryons do not
contribute to the evolution of the chiral condensate opens
the possibility to construct chiral Lagrangians with a lim-
ited number of degrees of freedom, including only hadrons
with masses less than ∼ 2GeV. To what extent such
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hadrons are elementary quark states or dynamically gen-
erated resonances remains an open question and is of great
importance to evaluate their sigma commutators. For the
nucleon, significant progress in this direction is being made
by calculating the bare quark mass dependence of the
mass, supplemented by chiral extrapolations to realistic
values of m◦

u,d. Such studies allow for an ab initio evalu-
ation of ΣN . A similar lattice analysis for excited states
would be highly desirable.

3 Medium modification of hadrons

What are the signatures of chiral-symmetry restoration
in hadronic matter? Being renormalization scale depen-
dent, the chiral condensate is not an observable. Changes
in Ω(T, µ) and possible phase transitions are, however, re-
flected in the measurable excitation spectrum. The strat-
egy is therefore to study the in-medium hadronic spectral
functions as the elementary excitations the matter in equi-
librium. In condensed matter this approach is known as
“soft-mode spectroscopy”. Quite generally, the restoration
of broken chiral symmetry will lead to identical spectral
functions for channels of opposite parity.

In QCD, the spectral properties of hadrons are en-
coded in the two-point correlation functions involving cur-
rents with the appropriate quantum numbers,

Di(q0, q) = i

∫
d4x

(V T )
eiqxθ(x0)〈〈[Ji(x), Ji(0)]〉〉, (7)

where Ji are local operators composed of elementary
quark fields. Notice the separate dependence on energy
q0 and three-momentum q due to loss of covariance in the
medium. The spectral function

ρi(q0, q) = − 1
π

ImDi(q0, q) (8)

represents the excitation spectrum in a given channel of
spin and parity. By means of the dispersion relation

Di(q0, q) =
∫ ∞

0

dq′20
ρi(q′0, q)

q′20 − q2
0 + iη

, (9)

ρi determines the entire correlation function. Rather than
as derivatives of the free energy (eq. (3)), the susceptibil-
ities can also be obtained directly from the spectral func-
tions ρi(q0, q) as

χi = 〈〈J2
i 〉〉 − 〈〈Ji〉〉2 = lim

(q0,q)→0
Di(q0, q)

=
∫ ∞

0

dq′20
ρi(q′0, 0)
q′20 + iη

(10)

which shows that enhanced fluctuations are related to the
low-energy and low-momentum behavior of the spectral
function.

First-principles lattice calculations of in-medium
hadronic spectral functions in Minkowski space have been

carried out for finite T and vanishing µ. Using maximum-
entropy methods results are reported in refs. [14,15]. Due
to the limited number of temporal data points they are
still quite crude. At present, more detailed insight into
the temperature dependence and the behavior at finite µ
is obtained from hadronic models. Formally, the pertinent
currents Ji(x) are identified with elementary fields φ(x)
such as the nucleon, ∆-isobar, pion, ρ-meson etc., that
constitute the relevant hadronic degrees of freedom. For
these, effective field theories, consistent with chiral sym-
metry, are utilized to calculated the in-medium spectral
properties as reliably as possible.

In connection with chiral-symmetry restoration, there
are several suggestions for exploring hadrons in the
medium. In the following, I will discuss two examples in
more detail. One deals with the behavior of the scalar-
isoscalar f0-meson and relates directly to the fluctuations
of the chiral condensate. The second concerns the ρ-meson
which plays a prominent role for low-mass dilepton pro-
duction in heavy-ion collisions and has been discussed ex-
tensively [16] in connection with the CERES data from
the CERN-SpS.

3.1 Scalar modes

As mentioned in sect. 2, the fluctuations of the chiral con-
densate are indicators for the restoration of chiral sym-
metry. In a rapid crossover or a weak first-order transi-
tion the scalar susceptibility χs is strongly enhanced (it
diverges in a second-order transition with critical expo-
nents determined by universal behavior). Since χs can be
obtained directly from the free energy Ω(T, µ) (eq. (3))
it can be reliably evaluated on the lattice for vanishing
µ. A strong enhancement in the vicinity of the crossover
is found [2]. According to eq. (10), this implies that the
scalar spectral function must be shifted to lower energy.
Within various models there have been several studies of
this behavior [17–20] which all come to similar conclu-
sions. As a representative example, I discuss recent results
within the linear sigma model in the 1/N -expansion [21].
Here the scalar quark current Js(x) = q̄q(x) is identified
with the sigma field σ(x) [22] and the scalar correlator
becomes the in-medium σ-propagator:

Ds(q0, q) ≡ Dσ(q0, q)

= i

∫
d4x

(V T )
eiqxθ(x0)〈〈[σ(x), σ(0)]〉〉. (11)

The results displayed in fig. 2 show a strong softening as
a function of number density n(µ). A similar reshaping is
also found as a function of temperature. It has been shown
explicitly that this effect is also found in non-linear real-
izations of chiral symmetry [23] and is therefore generic.

What are the experimental signatures? Since the σ-
or f0-meson strongly couples to two-pion states, a soft-
ening of the in-medium scalar spectral function leads to
the emission of soft pions which should be observable in
the pT spectra or HBT correlations in heavy-ion collisions.
There is a precursor to this phenomenon which may have
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Fig. 2. The in-medium spectral function of the σ-meson for
various values of density.

been observed already. According to eq. (6), the chiral
condensate in the interior of cold nuclei is reduced by
about 30%. Therefore, its fluctuations are enhanced —
in fact quite substantially— as can be seen from fig. 2.
This prediction can be tested in experiments where two pi-
ons with small cms momentum and the quantum numbers
J = I = 0 of the f0 are produced near threshold in nuclei.
Such experiments have been conducted by the CHAOS
Collaboration at TRIUMF using an incident π+ beam on
various nuclear targets [24] identifying charged pions in
the final state. A second experiment was performed by
the Crystal Ball (CB) Collaboration at BNL with an in-
cident π− beam [25] detecting a π0 pair in the final state
through coincident 4γ decay. Quite recently, the π0-pair
spectrum has also been measured in photon-induced re-
actions at MAMI-B using the TAPS spectrometer [26].
The photon has the advantage of weak initial-state in-
teraction. In all cases, a shift to lower invariant masses
for heavier nuclei has been reported. A quantitative un-
derstanding of the details of the distributions still awaits
final clarification. Uniquely establishing the results of the
measurements as a consequence of the in-medium s-wave
ππ interaction would be an important milestone in the
study of the chiral-symmetry restoration.

3.2 Vector- and axial-vector spectral functions

The ρ-meson appears as a prominent resonance in the
e+e−-annihilation cross-section as well as in τ → 2nπντ

decay. It therefore plays a central role for dilepton
production in heavy-ion collisions at invariant masses
below 1GeV. Medium-modifications of the ρ-meson have
been suggested as another signal of chiral-symmetry
restoration. The conjecture that the (pole) mass is pro-
portional to some power of the condensate ratio Rχ [27]
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Fig. 3. The theoretical dilepton rate at T = 150MeV and
µB = 3µq = 452MeV [28].

(“Brown-Rho” (BR) scaling) implies a dropping of the ρ
mass as Rχ decreases.

In general, the dilepton-production rate is given by the
in-medium electromagnetic spectral function as

dNl+l−

d4xd4q
= Lµν

(
− i

π

)∫
d4xeiqxθ(x0)

×〈〈[Jelm
µ (x), Jelm

ν (0)]〉〉, (12)

where Lµν denotes the lepton tensor. In the vector dom-
inance model (VDM) [29] which describes the vacuum
properties of the ρ very well, the electromagnetic current
correlator directly relates to its in-medium properties. In
the calculations [16], two important medium effects can
be identified. The first is the modification of the inter-
mediate two-pion states to which the ρ-meson strongly
couples. Here proper care has to be taken to ensure gauge
invariance. The second is a direct coupling to baryonic res-
onances, most prominently the N∗(1520)-resonance. The
inclusion of both effects leads to a large broadening of the
spectral function at high density and temperature and
results in a dramatic reshaping of the dilepton rate, as
indicated in fig. 3. Since theses rates are very close to
those obtained in hard-thermal-loop resumed perturba-
tion theory for the quark-gluon plasma [30], one would
conclude that the signal for chiral-symmetry restoration
in the vector sector is a smooth evolution for the hadronic
spectral function into that of the plasma. Once the local
rate is space-time evolved through a realistic fireball ex-
pansion until thermal freeze-out and detector acceptances
and background rates from Dalitz decays are properly ac-
counted for, the resulting rates compare favorably with
the measurements of the CERES Collaboration. Also the
transverse spectra are well reproduced.

The relevance of such results for the restoration of chi-
ral symmetry is not apparent, though. To make a stringent
connection requires a simultaneous evaluation of both the
vector- and the axial-vector correlator. In the vacuum and
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in the chiral limit both are related by two “Weinberg sum
rules” [31]:

∫ ∞

0

ds
s

(
ρ◦V (s)− ρ◦A(s)

)
= f2

π ;

∫ ∞

0

ds
(
ρ◦V (s)− ρ◦A(s)

)
= 0, (13)

where the first directly links the vacuum spectral func-
tions to the pion decay constant, fπ. Similar sum rules
also hold in the hadronic medium [32] and they serve as an
important constraint of effective field theories that intend
to properly implement chiral symmetry in the correlators.
This is quite difficult especially when dealing with high
baryon density. Here baryonic resonances of both parities
enter as chiral partners and an understanding of their chi-
ral structure is a necessity. As mentioned earlier, possible
parity doubling for high masses is an important issue in
this connection.

In the purely mesonic sector, relevant for RHIC en-
ergies, there have been several recent attempts to cal-
culate the vector- and axial-vector correlator simultane-
ously, maintaining gauge invariance and chiral symmetry.
One such approach [33,34] starts from the linear sigma
model which is globally gauged with elementary ρ and a1

fields as chiral partners. At high temperatures, a signif-
icant reshaping of distributions is observed, especially in
the low-energy region. Nevertheless, the ρ and a1 peaks re-
main present, even in the vicinity of the phase boundary.
The parameters of the model Lagrangian can be adjusted
such that, at the tree level, the ρ-meson mass is propor-
tional to the in-medium chiral condensate 〈〈σ〉〉. This is
the BR-scaling scenario. To one-loop order, however, it
can be proven analytically that the pole mass of the ρ-
meson remains unchanged to order T 2 and only receives
contributions of order T 4 and higher, hence putting BR-
scaling into question. In a series of recent papers [35–37]
the original BR scaling conjecture has been revisited in
the context of the “vector manifestation” of broken chiral
symmetry [38]. At the chiral phase transition this alterna-
tive way of breaking chiral symmetry requires the presence
of a massless vector meson which is identified with the
(longitudinal) ρ-meson. From the dilepton measurements
a the BR scenario cannot be rule out, a priori, and it will
presumably have to be decided in lattice simulations of
the pertinent in-medium spectral functions whether the
VM is a viable alternative to describe chiral-symmetry
restoration.

4 Outlook

Progress has been made in our understanding of the in-
medium properties of hadrons and their relation to the
restoration of broken chiral symmetry. Several questions
and issues remain open, though. They include: 1) the chi-
ral structure of low-mass hadrons, 2) the role of high-mass
mesons and baryons and the possible occurrence of parity

doubling, 3) further developments of chirally consistent
non-perturbative many-body methods that uniquely link
the equilibrium properties of matter to those of the spec-
tral functions, 4) comparison of hadronic models for in-
medium properties with lattice data, 5) the confinement
mechanism for light hadrons, and 6) the role and signa-
tures of deconfinement in the (T, µ) phase diagram.

This work was supported in part by GSI and BMBF.
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